Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

Academic Year 2019-20

Program:	BE
Semester :	7th
Course Code:	15MEL76
Course Title:	DESIGN LABORATORY
Credit / L-T-P:	2 / 1-0-2
Total Contact Hours:	30 Hrs
Course Plan Author:	Mr. Harendra Kumar H V/ Sagar H N

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-560090, KARNATAKA , INDIA Phone / Fax :+91-08023721315/23721477, Web: www.skit.org.in

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4	
1. Laboratory Overview		4
2. Laboratory Content		4
3. Laboratory Material		5
4. Laboratory Prerequisites:		5
5. Content for Placement, Profession, HE and GATE	•••••	6
B. Laboratory Instructions	6	
1. General Instructions		6
2. Laboratory Specific Instructions		6
C. OBE PARAMETERS	7	
1. Laboratory Outcomes		7
2. Laboratory Applications		7
Data Representation		7
3. Mapping And Justification	•••••	8
4. Articulation Matrix	•••••	8
5. Curricular Gap and Experiments		9
6. Experiments Beyond Syllabus		9
D. COURSE ASSESSMENT	9	
1. Laboratory Coverage	•••••	9
2. Continuous Internal Assessment (CIA)	1	11
E. EXPERIMENTS	11	
Experiment 1: Simple Calculator	1	11
Experiment 2 : Squares and cubes	1	12
Experiment 3 : Increasing font size of the text	1	12
Experiment 4 : String operations using HTML file	1	13
Experiment 5 : Student information using XML	1	4
Experiment 6 : Keep track of no of visitors	1	4
Experiment 7 : Digital clock	1	15
Experiment 8 : Matrix operation using PHP	1	6
Experiment 9 : PHP program name states	1	6
Experiment 10 : Selection sort	1	17
Experiment 11 :MINI Project	1	8
F. Content to Experiment Outcomes	19	
1. TLPA Parameters	1	9
2. Concepts and Outcomes:	2	20

Note : Remove "Table of Content" before including in CP Book Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B.E	Program:	ME
Year / Semester :	4/7	Academic Year:	2019-20

CourseTitle:	DESIGN LABORATORY	Course Code:	15MEL76
Credit / L-T-P:	2 / 1-0-2	SEE Duration:	180 Minutes
Total Contact Hours:	30 Hrs	SEE Marks:	75Marks
CIA Marks:	20	Assignment	1 / Module
Course Plan Author:	Mr. Sagar H N	Sign	Dt :
Checked By:	Mr. Harendra Kumar H V	Sign	Dt :

2. Laboratory Content

Expt.	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Determination of natural frequency, logarithmic decrement, damping ratio	3	Vibration	L3
	and damping Co-efficient in a single degree of freedom vibrating systems			Apply
	(longitudinal and torsional)			
2	Determination of critical speed of rotating shaft.	3	critical speed	L3
				Apply
3	Balancing of rotating masses.	3	Balancing	L3
				Apply
4	Determination of fringe constant of Photo-elastic material using Circular	3	Photo-elastic	L3
	disk subjected diametric compression, Pure bending specimen (four point			Apply
	bending)			
5	Determination of stress concentration using Photo elasticity for simple	3	stress	L3
	components like Plate with hole under tension or bending, circular disk with		concentration	Apply
	circular hole under compression, 2-d crane hook.			
6	Determination of equilibrium speed, sensitiveness, power and effort	3	speed	L3
	ofPorter/ Proel / Hartnell Governor.			Apply
7	Determination of pressure distribution in Journal bearing	3	Hydrodynami	L3
			c Lubrication	Apply
8	Determination of principle stresses and strain in a member subjected to	3	Strain	L3
	combined loading using strain rosettes		rosettes	Apply
9	Determination of stresses in curved beam using strain gauge.	3	Strain guage	L3
				Apply
10	Experiments on Gyroscope (Demonstration only)	3	Gyroscopic	L2
			effect	understand

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	
Α	Text books		-
	Design of Machine Elements", V.B. Bhandari, TMH publishing company Ltd, New Delhi, 2 nd Edition 2007.	In Lib	
В	Reference books		
1	[1] "Theory of Machines", Sadhu Singh, Pearson Education, 2 nd Edition, 2007.	In dept	
	[2] "Mechanical Vibrations", G.K. Grover, Nem Chand and Bros, 6 th Edition,		
_			
2	Others (Web, Video, Simulation, Notes etc.)		
С	Concept Videos or Simulation for Understanding		
C1			
D	Software Tools for Design	-	-
1			
Е	Recent Developments for Research	-	-
1			

F	Others (Web, Video, Simulation, Notes etc.)	-	-
1			

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Expt.	Lab. Code	Lab. Name	Topic / Description	Sem	Remarks	Blooms
						Level
1	15ME52	Dynamics of	Static force Analysis,			L3
		machinery				
1			Dynamic force Analysis	5		L3
1			Balancing of Rotating Masses			L3
6			Governors,Gyroscope			L3
2	10ME72	Mechanical	Single Degree of Freedom	7		L3
		Vibrations				
1			Damped free Vibrations			L3
1			Forced Vibrations			L3

Students must have learnt the following Courses / Topics with described Content . . .

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms
				Level
1	Static force Analysis,	Structure		L3
1	Dynamic force Analysis	Structure		L3
1	Balancing of Rotating Masses	Structure		L3
6	Governors, Gyroscope	Structure		L3
2	Single Degree of Freedom	Vibrations		L3
1	Damped free Vibrations	Vibrations		L3
1	Forced Vibrations	Vibrations		L3

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment or burn-out components will be viewed seriously either	

	by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Student should bring a notebook of 100 pages and should enter the readings	
	observations into the notebook while performing the experiment.	
2	The record of observations along with the detailed experimental procedure of the	
	experiment in the Immediate last session should be submitted and certified staff	
	member in-charge.	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr Method	Assessment	Blooms'
-	-	At the end of the experiment, the student should be able to	-	-	-	-	-
1	15MEL76	Apply the natural frequency, logarithmic decrement, damping ratio and damping.	03	Vibration	Chalk and Board	Practical record and slip test	L3
2	15MEL76	Apply for different diameter of shaft to find critical speed.	03	critical speed	Chalk and Board	Practical record and slip test	L3
3	15MEL76	Applying the forces and couples in rotating mechanical system.	03	Balancing	Chalk and Board	Practical record and slip test	L3
4	15MEL76	Apply the load on circular disk subjected to diametrical compression, pure bending	03	Photo-elastic	Chalk and Board	Practical record and slip test	L3
5	15MEL76	Apply the load for simple components like Plate with hole under tension or bending, circular disk with circular hole under compression, 2-d crane hook.	03	stress concentration	Chalk and Board	Practical record and slip test	L3
6	15MEL76	Apply the equilibrium speed, sensitiveness, power and effort ofPorter/ Proel / Hartnell Governor.	03	speed	Chalk and Board	Practical record and slip test	L3
7	15MEL76	Apply and understand the minimum film thickness, load carrying capacity, frictional torque and pressure distribution of journal bearing.	03	Hydrodynamic Lubrication	Chalk and Board	Practical record and slip test	L3
8	15MEL76	To measure strain in various machine elements using strain gauges	03	Strain rosettes	Chalk and Board	Practical record and slip test	L3
9	15MEL76	Apply the stresses in curved beam using strain gauge.	03	Strain guage	Chalk and Board	Practical record and slip test	L3
10	15MEL76	understand the working principles of machine elements such as Gyroscopes	03	Gyroscopic effect	Chalk and Board	Practical record	L2
		Total	30	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	machinery components, Car Suspension, spring mass system	CO1	L3
15MEL7	6 Copyright ©2017. cAAS. All rights	reserved.	

2	Bearing, pumps, generator	CO2	L3
3	gas turbines and electric generators	CO3	L3
4	residual stress, glass and polymer, plastics	CO4	L3
5	two dimensional plane stress	CO5	L3
6	automobiles	CO6	L3
7	bearings	CO7	L3
8	plastics, cast iron and magnesium alloys	CO8	L3
9	Transducers, transistors, resistors	CO9	L3
10	Micro-Electro-Mechanical System	CO10	L2

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt.	. Mapping Mappi		Mapping	Justification for each CO-PO pair	Lev
			Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	L2	Knowledge is required to understand the Vibrations	
1	CO1	PO2	L3	Analyzing problem is required to compare values	
2	CO2	PO1	L2	Knowledge is required to understand the Critical Speed	
2	CO2	PO2	L3	Analyzing problem is required to compare values	
3	CO3	PO1	L2	Knowledge is required to understand the Balancing of Mass	
3	CO3	PO1	L3	Analyzing problem is required to compare values	
4	CO4	PO1	L2	Knowledge is required to understand the Photo Elastic y	
4	CO4	PO2	L3	Analyzing problem is required to compare values	
5	CO5	PO1	L2	Knowledge is required to understand the Stress Concentration	
5	CO5	PO2	L3	Analyzing problem is required to compare values	
6	CO6	PO1	L2	Knowledge is required to understand the Speed	
6	CO6	PO2	L3	Analyzing problem is required to compare values	
7	CO7	PO1	L2	Knowledge is required to understand the Lubrication	
7	CO7	PO2	L3	Analyzing problem is required to compare values	
8	CO8	PO1		Knowledge is required to understand the Strain Rosettes	
8	CO8	PO2	L3	Analyzing problem is required to compare values	
9	CO9	PO1	L2	Knowledge is required to understand the Strain Guages	
9	CO9	PO2	L3	Analyzing problem is required to compare values	
10	CO10	PO1	L2	Knowledge is required to understand the Gyroscopic Effect	
10	CO10 PO2 L3 Analyzing problem is required to compare values				

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes						Prog	gran	ı Oı	itco	mes						-
Expt.	CO.#	At the end of the experiment	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	O 2	O 3	el
1	15ME76.1	Apply the natural frequency,			-	-	-	1	-	I	-	-	-	-	L3			
		logarithmic decrement, damping ratio																1
		and damping.																1
2	15ME76.2	Apply for different diameter of shaft			-	-	-	-	-	-	-	-	-	-	L3			
		to find critical speed.																1
3	15ME76.3	Applying the forces and couples in			-	-	-	-	-	-	-	-	-	-	L3			
		rotating mechanical system.																1
4	15ME76.4	Apply the load on circular disk			-	-	-	-	-	-	-	-	-	-	L3			
		subjected to diametrical compression,																1
		pure bending																1
5	15ME76.5	Apply the load for simple			-	-	-	-	-	-	-	-	-	-	L3			
		components like Plate with hole																1

LABORATORY PLAN - CAY 2019-20

		under tension or bending, circular disk with circular hole under compression, 2-d crane hook.															
6	15ME76.6	Apply the equilibrium speed, $$	/ `	V	-	-	-	-	-	-	-	-	-	-	L3		
		ofPorter/ Proel / Hartnell Governor.															
7	15ME76.7	Apply the minimum film thickness, $\sqrt{1}$	/ ^	\checkmark	-	-	-	-	-	-	-	-	-	-	L3		
		torque and pressure distribution of															
		journal bearing.															
8	15ME76.8	To measure strain in various machine $$	/ ^	\checkmark	-	-	-	-	-	-	-	-	-	-	L3		
		elements using strain gauges															
9	15ME76.9	Apply the stresses in curved beam $$	/ ^	\checkmark	-	-	-	-	-	-	-	-	-	-	L3		
		using strain gauge.															
10	15ME76.10	understand the working principles of $$	/ ^		-	-	-	-	-	-	-	-	-	-	L2		
		machine elements such as															
		Gyroscopes															
11	15ME76PC.	Average		T													

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachin	eachin No. of question in Exam							CO	Levels
		g Hours	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
1	Determination of natural frequency,	03	1	-	-	-	-	-	1	CO1	L3
	logarithmic decrement, damping ratio										
	and damping Co-efficient in a single										
	degree of freedom vibrating systems										
	(longitudinal and torsional)										
2	Determination of critical speed of	03	1	-	-	-	-	-	1	CO2	L3
	rotating shaft.										
3	Balancing of rotating masses.	03	1	-	-	-	-	-	1	CO3	L3
4	Determination of fringe constant of	03	1	-	-	-	-	-	1	CO4	L3
	Photo-elastic material using Circular										
	disk subjected diametric compression,										
	Pure bending specimen (four point										
	bending)										
5	Determination of stress concentration	03	1	-	-	-	-	-	1	CO5	L3
	using Photo elasticity for simple										

LABORATORY PLAN - CAY 2019-20

	components like Plate with hole under tension or bending, circular disk with circular hole under compression, 2-d crane hook.										
6	Determination of equilibrium speed, sensitiveness, power and effort ofPorter/ Proel / Hartnell Governor.	03	1	-	-	-	-	-	1	CO6	L3
7	Determination of pressure distribution in Journal bearing	03	1	-	-	-	-	-	1	CO7	L3
8	Determination of principle stresses and strain in a member subjected to combined loading using strain rosettes	03	1	-	-	-	-	-	1	CO8	L3
9	Determination of stresses in curved beam using strain gauge.	03	1	-	-	-	-	-	1	CO9	L3
10	Experiments on Gyroscope (Demonstration only)	03	1	-	-	-	-	-	1	CO10	L3
-	Total	30	10	-	-	-	-	-	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	20	CO1, CO2, CO3, CO4	L3
CIA Exam – 2	20	CO5, CO6, CO7,	L3
CIA Exam – 3	0	CO8, CO9,CO10	L3
	_	-	-
Other Activities - define -	-	-	-
Slip test			
Final CIA Marks	20	-	-

-		
SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	04 Marks
2	Record Writing / Viva	08 Marks for each Expt
3	Internal Exam Assessment	08Marks
4	Internal Assessment	20 Marks
5	SEE	80Marks
-	Total	100 Marks

E. EXPERIMENTS

D. EXPERIMENTS

Experiment 01 : Determination of natural frequency, logarithmic decrement, damping ratio and damping Coefficient in a single degree of freedom vibrating systems (longitudinal and torsional)

A. Simple pendulum

-	Experiment No.:	1 Marks		Date		Date				
				Planned		Conducted				
1	Title	Determination of	natural freque	ncy, logarithm	ic decrement,	damping ratio	and damping			
		Co-efficient in a si	o-efficient in a single degree of freedom vibrating systems							
2	Course Outcomes Apply the natural frequency, logarithmic decrement, damping ratio and damping.									
3	Aim	To study the oscillations of simple pendulum.								
4	Material / Equipment	Lab Manual								
	Required									
5	Theory, Formula,	Students should w	rite about stati	c equilibrium p	osition, natura	al frequency,				
	Principle, Concept	derive expression	for natural free	juency for free	vibrating body	y, derive expre	ssion			
		for springs in serie	es and parallel.							
6	Procedure, Program, 1. Tightly fix the ball with the thread.									
1514	71.76			C		A.G. A.H. 1. 1.	1			

	Activity,Algorithm, 2 Displace the ball from the equilibrium position.Pseudo Code3. Measure the time required for 10 oscillations.4. Repeat this procedure by changing the length of the thread.								
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph			5	0				
8	Observation Table,	Sl.no	Time oscili	fo foi lations	r 5	T_{exp}) = t/n	$f_{\rm exp} = 1/T_{\rm exp}$	$(T_{\text{theo}}) = 2 \pi \sqrt{\frac{l}{g}}$	
			1	2	avg				
	Look-up Table, Output					1			
		Sl.no	Time oscili	for for	10	T_{exp}) = t/n	$f_{\rm exp} = 1/T_{\rm exp}$	$(T_{\text{free}}) = 2 \sqrt{\frac{1}{g}}$	
			1	2	avg			(1 theo) = 2	
		1							
		2							
		3							
9	Sample Calculations	1. Actual torsic	onal V	Vibrat	tion (T_{exp}) = t/n	- [ī		
		2. Theoretical t	orsio	nal V	/ibrat	ion $(T_{\text{theo}}) = 2$	"\g		
		g = Acce	lerati	ion d	ue to	, gravity in cm	ns/sec ²		
		 Experimental fr Theoretical f 	requer Frequ	ncy f_e ency	$f_{th} = 1$	\overline{T}_{exp} eo = 1/ T_{theo}			
10	Graphs, Outputs								
11	Results &Analysis	The percentage error of the system between theoretical and experimental natural lency is							
12	Application Areas	shaping machiner	y com	ponen	ts,Car	Suspension, spri	ng mass system		
13	Faculty Signature with Date								

B. Forced Damped Vibration of Spring Mass System

-	Experiment No.:	1	Marks		Date		Date			
					Planned		Conducted			
1	Title	Det	etermination of natural frequency in a single degree of freedom vibrating systems							
2	Course Outcomes	App	apply the natural frequency, logarithmic decrement, damping ratio and damping.							
3	Aim	To s	study the oscill	ations of simp	le pendulum.					
4	Material / Equipment	Lab	Manual							
	Required									

		M = mass attached =								
		$\delta = \text{static deflection}$								
		$W = weight attached = mg = \dots N$								
		Stifness of spring $K = 100 \text{ W} / \delta$ N/m where δ is in mm								
	Frequency of oscillation:									
	$F_n = \{(1/2\pi) \ \sqrt{K/m} \ Hz$									
		$T_{\text{theory}} = 2\pi^* \sqrt{M/K}$ Sec								
		T_{exp} =Time for 5 & 10 oscillation								
10	Graphs, Outputs	– –								
11	Results & Analysis									
12	Application Areas	shaping machinery components, Car Suspension, spring mass system								
13	Remarks									
14	Faculty Signature with									
	Date									

Experiment 02 : Determination of natural frequency, logarithmic decrement, damping ratio and damping Coefficient in a single degree of freedom vibrating systems (longitudinal and torsional)

A. Single Rotor System

-	Experiment No.:	1	Marks		Date		Date			
					Planned		Conducted			
1	Title	Det	ermination of	natural freque	ncy, logarithm	ic decrement,	damping ratio	and damping		
		Co-	efficient in a s	ingle degree of	freedom vibra	ting systems				
2	Course Outcomes	App	oly the natural	frequency, loga	arithmic decrei	nent, damping	ratio and dam	ping.		
3	Aim	To s	study the torsic	onal vibrations	of single rotor	system.				
4	Material / Equipment	Lab	Manual							
	Required									
5	Theory, Formula,	Wh	When the particle of the shaft or disc moves in a circle about the axis of the shaft, then the							
	Principle, Concept	vibı	ibrations are known as Torsional vibration. In torsional vibrations the shaft is twisted &							
		con	ontrasted alternately & torsional shear stresses are induced in the shaft.							
6	Procedure, Program,	1.	Find The St	iffness Of Th	ne Torsion W	Ire				
	Activity, Algorithm,	2.	Attach one	end of the T	orsion Wire	to the head	& other to	the rotor &		
	rseudo Code	app	paratus is lev	veled						
		3.	Adjust the le	ength of wire	e so that roto	or is at prope	er level			
		4.	Check the o	il level in the	e vessel with	the rotor di	ipping in oil			
		5.	The torsion	head is rotat	ed slowly ur	ntil the point	ter shows ze	ro degree		
		6	Disturb the	rotor & relea	se the graph	nointer		6		
		э. 7	Note down i	the time & ir	clination	- pointer				
		7. 8. (Calculate na	tural freque	nev logarn	aithic decrea	ment damr	ing ratio &		
		0. v Jan		ficiant wain	ncy, logarn		ment, uamp	mg ratio &		
		aar	nping co-ei	ficient using	equations					
	Block, Circuit, Model									
	Diagram, Reaction									
	Equation, Expected	·								
	Graph									

		10. Damped natural frequency $(\omega_d) = \omega_n \sqrt{(1-\xi^2)}$.
10	Graphs, Outputs	D -
		□ -
11	Results & Analysis	The percentage error of the system between theoretical and experimental natural
		uency is
12	Application Areas	shaping machinery components, Car Suspension, spring mass system
13	Remarks	
14	Faculty Signature with	
	Date	

B. DOUBLE ROTOR SYSTEM

-	Experiment No.:	1	Marks		Date Planned		Date Conducted			
1	Title	Dete	rmination of	natural freque	ncy, logarithm	ic decrement,	damping ratio	and damping		
	<u> </u>	Co-e	efficient in a si	ingle degree of	freedom vibra	iting systems				
2	Course Outcomes	App	ly the natural	trequency, loga	arithmic decrei	ment, damping	ratio and dam	ping.		
3	Aim	To s	tudy the torsic	nal vibrations	of two rotor sy	vstem.				
4	Material / Equipment Required	Lab	ab Manual							
5	Theory, Formula,	Whe	When the particle of the shaft or disc moves in a circle about the axis of the shaft, then the							
	Principle, Concept	vibra	vibrations are known as Torsional vibration. In torsional vibrations the shaft is twisted &							
		cont	rasted alternat	ely & torsional	l shear stresses	are induced in	n the shaft.			
6	Procedure, Program,	1.T	he shaft whose	e diameter is kr	nown is mount	ed between the	e two disc.			
	Activity, Algorithm,	2. 11 2. T1	he length of th	e snaft is meas	ured.	nnosita diracti	-n			
	r seudo Code	5. 11 4 Ti	me taken for	en a sman uisp 10 oscillations	in noted	pposite unection)]]			
		ч. 11 5 Т	The procedu	re con be rer	ni noteu. Nastad for di	fforont chaft	diameter			
	Block Circuit Model	5.1	ne procedu	ie can be rep		ficient shart	ulameter			
	Diagram. Reaction			1						
	Equation. Expected	3.	4-1	2						
	Graph									
			, ,		_1 1.N 2.1	fain Frame ock Nut				
					3. E 4. S	Bracket haft				
		5			5. P	en Holder				
		6			7. E	hisc				
					8. L 9. C	oil Container				
		7			10.	Supporting Base				
				8						
		9_								
					- 10					
		P		mannt	5					
					2					
) (
					\searrow					

8	Observation Table,	Lengtl Diame Mass o Diame Diame Polar 1 Modul	ength of the shaft between rotor = iameter of shaft d = lass of small rotor = ma = 1.7 Kg iameter of small rotor = d _a = 0.095 *2 m lass of bigger rotor = mb = 2.57 Kg iameter of bigger rotor = d _b = 0.11252 * 2 m plar moment of Inertia $I_p = (\pi d^4/32)$ lodulus of rigidity of shaft c = 85*10 ⁹ N/m ² .								
	I ook-un Table, Output	SL	Shaft length	Time fo	or 5 Osci	llations	$T_0 = AVG/5$	$F_n = \frac{1}{2}\pi$	$T_{theo} = 1/F_n$		
	Look-up Table, Output	No	in cm	1	2	avg	_	$\sqrt{(K_t/I)}$			
9	Sample Calculations	1. $K_t =$ 2. $I_A =$ 3. $I_B =$ 4. $T_{th} =$ 5. f_{th}	$ \frac{1. K_{t} = G I_{p} / L = N-m}{2. I_{A} = M_{A} R_{A}^{2} / 2 = Kg-m^{2}} $ $ \frac{3. I_{B} = M_{B} R_{B}^{2} / 2 + 2(W_{1} R^{2} / 8) = Kg-m^{2}}{\pi \sqrt{\frac{I_{a} I_{b}}{K_{t} (I_{a} + I_{b})}}} $ $ \frac{1. K_{t} = 2 \sqrt{\frac{I_{a} I_{b}}{K_{t} (I_{a} + I_{b})}}{\sqrt{\frac{I_{a} I_{b}}{K_{t} (I_{a} + I_{b})}}} $								
10	Graphs, Outputs		-								
11			-								
11	Application Areas	chonin	a machinary as	mnonant	Car Sur	nancion	pring mage as	retom			
12	Remarks	snapm	g machinery co	mponent	s, cai sus	spension,s	spring mass sy	SICIII			
14	Faculty Signature with	\									
17	Date										

Experiment 03 : Determination of critical speed of rotating shaft.

-	Experiment No.:	2	Marks		Date		Date		
					Planned		Conducted		
1	Title	Deter	mination of cri	tical speed of r	otating shaft.				
2	Course Outcomes	Apply	for different o	liameter of sha	ft to find critic	al speed.			
3	Aim	To d	etermine th	e critical sp	beed (whirli	ng speed) o	of a uniform	n shaft and	
		co	mparing wi	th the theore	tical value.				
4	Material / Equipment	Material / EquipmentLab Manual							
	Required								
5	Theory, Formula,	Theory, Formula, 1. When the speed of an unloaded shaft is gradually increases, at certain							
	Principle, Concept	sp	eed, the def	flection of the	ne shaft beco	omes very la	arge. This is	the critical	
		sp	eed.						
		2. T	he shaft defe	ects into a bo	w and whir	s.			
		3. It	f this speed	is maintain	ed, the very	large defle	ction will re	esults in the	
		fra	acture of sha	ıft.					
		4. At	the critical	speed ampl	itude of trar	sverse vibra	ation coincid	des with the	
		na	natural frequency of transverse vibrations that means 'resonance' occurs.						
		He	Hence in the region of critical speeds shaft may fail. Large amount of						
		fo	rce is transn	nitted to the	foundations	or bearings.			

6	Procedure, Program, Activity, Algorithm, Pseudo Code	1. N 2. N 3. S 4. S 5. C 6. R	 Measure diameter, length and mass of the given shaft. Note down end conditions of the shaft. Switch on the motor to get transverse vibrations. Slowly increase the speed of shaft by using dimmerstat till critical speed is achieved. Note down critical speed by using digital tachometer. Compare experimental values with theoretical. Repeat the experiments with different shafts diameter. 								
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph				Shaft acco displ well inter	Section of concentrated stree	Point of bending ave stepped geom d pulleys and to res dden changes in cr ches and holes, ar il trouble spots for	maximum maximum moment etry to strict axial ross section, as e local stress fatigue.			
					Theor.			ł			
8	Observation Table,	Тур	e of end cor	nditions:	E= Young	s's modulus c	of shaft $=2.7$	*11 N/m ²			
		Sl.	Diameter	Length of	Mass of	Weight/	Critical Sp	eed in rpm			
	Look-un Table	No	of shaft D in mm	Shaft L in mm	Shaft M in kg	length Newton/ meter	N(Theo)	N(exp)			
	Output										
9	Sample Calculations	1. W W = 2. M 3. D 51 4. N 51 f=	 Weight per unit length= W/L =(M*g)/L in Newton/meter = W = weight of shaft, Mass moment of inertia of shaft I ={πd⁴}/64 meter⁴ Displacement due to weight of the shaft (uniform distribution load with simply supported end conditions) δ = {5/384}* {{W L⁴} / E I} = Natural frequency of transverse vibrations of shaft (UDL with simply supported end conditions) f=0.5615 √ δ Hertz Critical speed N_{c (theory)} = fx60 rpm . 								
10	Results & Analysis										
12	Application Areas	Beari	ng,pumps, gei	nerator							
13	Remarks										

14 Faculty	Signature
with Date	

Experiment 04 : Balancing of rotating masses.

-	Experiment No.:	1	Marks		Date Planned		Date Conducted			
1	Title	Balan	cing of rotating	g masses.		L		<u> </u>		
2	Course Outcomes	Apply	ring the forces	and couples in	rotating mech	anical system.				
3	Aim	To de	etermine of t	four counter	balancing w	veights in ro	tating mass	systems and		
		verif	ying practica	ally the rotat	ing mass sy	stem				
4	Material / Equipment	Lab M	Lab Manual							
5	Theory. Formula.	Why	Why balancing is necessary?							
	Principle, Concept	Diffe	Different high speed matching have been using in various industries. Every							
		mach	ine has eith	ner reciproca	ting parts of	r rotary part	v or both .If	there is any		
		unba	lanced part	mass is p	resent in th	ne machine,	, the unbala	anced mass		
		deve	lops "dynai	nic forces"	. These dy	namic forc	es increase	s loads on		
		beari	ngs and stre	esses in vario	ous member	s. Finally it	results "unp	pleasant and		
		dang	erous vibrat	ions". Hence	e balancing i	s necessary				
6	Procedure, Program,	I. ST	ATIC BAL	ANCING						
	Activity, Algorithm, Pseudo Code									
		1. TI	he main fran	ne is suspend	ded from the	e support fra	me by bolt a	and nut in		
		such	a way that r	nain frame is	S					
		p 2 D	erpendicular	to supporting to support the support of the support	ng frame.	tor				
		2. D	ttach the cor	en pulley 1 ed ends of th	a nans to ait	WI. her side of t	he "combine	ad hook"		
		5. A 4. Se	et the pointe	r to 0 on the	circular sca	le by using l	ocking nut	a nook .		
		5. A	ttach the blo	ck No.1 to f	he shaft at a	nv convenie	nt place in v	vertical		
		dowr	ward direct	ion.						
		6. R (to to th 7. I	emove the lo o exactly bal 90 when the is for 2 to3 t e block on 1 Repeat the p	ocking nut an ance the blo block reach imes and fin (W1) rocedure for	nd put steel ck on the sh nes to90, not d the average other block	balls one by aft).till the b ted down nu ge on. of wh and find W	one in one of block starts r mber of ball lich will give $_1$, W_2 , W_3 and	of the pans noving up Repeat es weight of d W ₄ .		
		II.DY	YNAMIC B	ALANCIN	G					
		1. U "c	Using the value of the value of the second s	alues of W_1 on" from the lar positions	W_2, W_3 and W_2, W_3 and W_2, W_3 and W_3 and W_2 and W_3 and W_2 and W_3 and	and W_4 and ghs $-\theta_1, \theta_2$.	its position θ_3 and θ_4 and θ	ns draw the		
		2. If dr pc	f weighs, ar aw the "for osition of the	ngular positi ce polygon fourth bloc	ons and pla " from the $k(\theta)$ for bal	nes of three force polyg ancing of the	e block are gon note do e complete s	known then own angular system.		
		3ар	From the copropriate popropriate popropriate popropriate poproprime poproprime poproprime poproprime poproprime poproprime poproprime poproprime popropropropropropropropropropropropropr	alculations, sitions.	clamp the	all blocks	on the sh	aft in their		
		4. C	onnect "belt	pulley" with	h the motor.					
		5. N su	Aainframe is ch a way th	s suspended hat both ma	from the suit from the suit from the suit from the suit of the sui	upport fram supporting	e by two sh frame are	ort links in in the same		
		6 St	and. art the moto	r						
		5. JI 7. TI	hen verify th	e calculation	ns with perfe	ect balancing	g			

8	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Position	to f planes of the masses F $\frac{1}{2}$ $\frac{1}{2}$ 1	Force Polygon F_1 F_3 F_5 of the mass Mass 3 Mass 5 Mass 5	Courle C – Wi * V
	Look-up Table, Output	NO	Force W _i	reference block X _i	Couple $C_i = W_1 * X_i$
9	Sample Calculations				
10	Graphs, Outputs				
11	Kesults & Analysis				
12	Application Areas				
13	Foculty Cionotore				
14	with Date				

Experiment 05 : Determination of fringe constant of Photo-elastic material using Circular disk subjected diametric compression, Pure bending specimen (four point bending)

A. Calibration under Bending Load

-	Experiment No.:	1	Marks		Date		Date	
					Planned		Conducted	
1	Title	Deterr	Determination of fringe constant of Photo-elastic material using Circular disk subjected					
		diame	liametric compression, Pure bending specimen (four point bending)					
2	Course Outcomes	Apply	the load on ci	rcular disk sub	jected to diam	etrical compre	ssion, pure be	ndin

3	Aim	To calibrate the given photo elastic model subjected to pure bending.
4	Material / Equipment	Lab Manual
5	Required	
5	Principle, Concept	Beam under pure bending. A rectangular beam may be prepared out of the
		photo elastic material and subjected to pure bending as snown in fig. 7.14.
		At a given load the maximum tringe order may be determined and material
		Infige value is evaluated as explained below. Panding moment $M = Pa$ $P = A atual L and a = distance between supports$
		Bending moment, $M = Pa^{-}$, $P = Actual Load, a = distance between supports.$
		Pa Pa
		$\sigma_1 = \frac{my}{L} = \frac{\hbar\omega^3}{m} * \frac{\omega}{2} = \frac{\hbar\omega^2}{m}$, $\omega = \text{width of model specimen}$, $h = \text{thickness of}$
		specimen
		Stress from bending moment \equiv Stress from caliberation constant
		Pa
		Therefore $\frac{h\omega^2}{r} - \frac{Nf\sigma}{h}$ where f_{σ} - caliberation constant
		stress/fringe/thickness
		$\frac{P}{6a}$
		$Or \int_{\sigma} = (N)^{l} \omega^{2}$
		When the principal stress difference $(\sigma 1 - \sigma 2)$ is either zero or sufficient to
		produce an integral number of wavelengths of retardation the intensity of
	6	emerging from analyzer is zero.
		The fringe pattern obtained under bending load is seen to get distorted near
		the point loading and it is somewhat parallel to each other at the center of
		the model is viewed under monochromatic light. The isometric fringe pattern
		appears only when the principle stress difference is zero. with
		monochromatic light source, the individual linges is an isochromatic linge
		wavelength of light is fixed
		Pa
	r	Therefore $\sigma_1 - \sigma_2 = \frac{h\omega^2}{c} = \frac{Nf\sigma}{h}$
	r	The number of fringes appearing in an isochromatic fringe pattern is
		controlled by the principle stress difference $(\sigma_1 - \sigma_2)$, thickness h of the
		material and by the sensitivity of the photo elastic material as denoted by f_{σ}
	-	The expression for material fringe values and model fringe value can be
		obtained by
		Load B = Load at C = $[(w \times L_2 / L_1) + w_h]/2 = P$
		Where $L_1 = Load$ lever arm
		W_{b} = weight of the beam.
		Max. bending moment = P.L where $L = overhang$ of load application point
		over the support point.
		Bending stresses σ_b is ,
		$M_bC = \frac{PL}{h\omega^3} * \frac{h}{2} = \frac{PL}{h\omega^2}$
		$\sigma_b = \overline{l} = \frac{n\omega}{12} = \frac{n\omega}{6}$
	1	$f_{\sigma} = (\sigma_b/N).h = (Slope)$, $h = material fringe constant$, Model fringe value =
		$f_{\sigma}/h.$
6	Procedure, Program,	1. Attach the loading bar with counter weight on one side of the bar and
	Activity, Algorithm, Pseudo Code	hang a pan other side for placing
		the weights. So as to make lever horizontal.
		2. Place the model between the loading arm and the bottom surface of the
		trame.
	-	3. Measure the distances from the "fulcrum" to the center of specimen (11)
1		and fulcrum to load point (1)

12	Application	Areas		
13	Remarks			
14	Faculty	Signature		
	with Date			
Add required experiments				

Add required experiments

b. Calibration under Diametrical Compression.

-	Experiment No.:	1	Marks		Date Planned		Date Conducted	
1	Title	Deter	rmination o	f fringe cor	stant of Ph	oto-elastic	material usi	ng Circular
		disk	subjected d	iametric con	mpression, I	Pure bendin	g specimen	(four point
		bend	ing)		1 /			` 1
2	Course Outcomes	Appl	y the load of	on circular d	lisk subjecte	ed to diament	rical compre	ession, pure
		bend	in		-		_	_
3	Aim	To c	alibrate the mpression	e given pho	otoelastic m	naterial usin	ng circular	disk under
4	Material / Equipment	tLab I	Manual					
5	Required	T 1	· · · · · · · · · · · · · · · · · · ·	. 1	4 1 1	(1 1 ¹)	· · · ı	1' 1
5	Principle, Concept	$\frac{2P}{T}$	$\left(\frac{4D^2-1}{D^2+4x^2}\right)$	iven by,	$\sigma_x = \sigma_1 = 0$	$\left(\frac{2p}{\pi tD}\right) \left(\frac{D^2}{D^2}\right)$	$\frac{4x^2}{4x^2}$ and	$\sigma_y = \sigma_2 = ($
		princ is dis	ipal stresses	in x and y c center, t is the	lirections, I lickness of s) is diamete pecimen.	r of circular	specimen, x
		At th - (1)	e center i.e.	x = 0, thus	$\sigma_1 = \frac{2P}{\pi t D}$ and	and $\sigma_2 = \frac{-6P}{\pi t D}$, and $\sigma_1 - \sigma_2$	$r_2 = \frac{8P}{\pi t D} - \cdots$
		From direc to the (2)	tly proportion tly proportion thickeness	c law for 2 - onal to N , th of specimer	- dimensions the number of $h - with f_{\sigma} th$	s : Differenc f fringes an he constant	e in principa d inversely p of proportio	al stresses is proportional nality
		There	efore, from	(1) and (2)		$\sigma_1 - \sigma_2 = \frac{N}{t}$	$f_{\sigma} = \frac{8P}{\pi t D}$	
		N/mı	n/fringe		and	$f_e = \frac{8P}{\pi DN}$	$=\left(\frac{8}{\pi D}\right)$	$\left(\frac{p}{N}\right) = \frac{8}{\pi D} \frac{\Delta P}{\Delta N}$
		By k grapł estim	nowing the the of P vs N, the the fring	loads requin is plotted an ge constant o	red for produced for brodued for the material for the mat	ucing differ his line give al.	ent number es (P/N) whice	of fringes a ch is used to
6	Procedure, Program	1. At	tach the cou	nter weight	on one side	of the loadin	ng bar and pu	ut the
	Activity, Algorithm Pseudo Code	weig 2. M	hts on the pa ake lever ho	an rizontal posi	tion by rotat	ting the han	dle of loadin	g frame

		 3. Place the model between the loading arm and bottom surface of the frame 4. Measure the distances from the "fulcrum" to the center of specimen (L1) and from fulcrum to load point (L) 5. Determine the loads required for getting integral fringe orders (0,1,2,3) at the center of circular disc and tabulate 6. Draw a graph between effective load vs no. of fringes. 7. Calculate the slope of the line 8. Calculate material fringe constant by using theoretical and compare it
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	Diameter of specimen (D)=mmThickness of specimen (t) =mmLength of fulcrum to load (L_1) =cmLength of fulcrum to model (L_2) =cm
9	Sample Calculations	1.Actual load = P = $(w^*g)(L_1/L_2) =$ 2. Material fringe constant $f_{\sigma} = \frac{8}{\pi D} \frac{\Delta P}{\Delta N}$ 3. Model fringe constant $f = f_{\sigma}/t =$ N/mm ² /Fringe 4.Slope (from graph) = $\Delta P/\Delta N =$
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature with Date	

C. Determination of Stress Concentration Factor for Circular Disc with Circular Hole.

-	Experiment No.:	1	Marks		Date		Date	
					Planned		Conducted	
1	Title	Deter	mination of fi	inge constant	of Photo-elast	tic material us	sing Circular	disk subjected
		diame	tric compressi	on, Pure bendi	ng specimen (f	our point bend	ling)	
2	Course Outcomes	Apply	the load on ci	rcular disk sub	jected to diam	etrical compre	ssion, pure be	ndin
3	Aim	To d	o determine stress concentration factor for circular disc with circular hole					
		un	under diameter compression					
4	4 Material / Equipment Lab Manual							
	Required							
5	Theory, Formula,	Circu	lar polar scop	e:				
15ME	EL76				Cop	yright ©2017. cA	AS. All rights res	erved.

Principle, Concept In addition to all the elements of plane polar scope, the circular polar scope has two more additional elements, i.e. 1st quarter wave plate placed in between the polarizer and the model and whose fast and slow axes are inclined at 45° with the axes of the polarizer and 2nd quarter wave plate placed in between the model and the analyzer and whose fast and slow axes are inclined at 45° with the axis of the analyzer or the polarizer. Depending upon the relative orientation of the polarizer, analyzer and quarter wave plates, four different setups may be obtained. The quarter wave plates are also made out of Polaroid film and produce a path difference of 4 in the light vectors passing through them. The four different set-ups are shown in the following table. The crossed polarizer and analyzer are crossed quarter wave plates set-up is known as the standard set-up of a circular polariscope. Effect of a stressed model in a circular polariscope: Consider the standard set-up of a circular polariscope as shown in fig. Then the light vector leaving the polarizer is given by A = a sin ω t. In the 1st quarter wave plate (QWP) the components of light vector while entering are: $A_{1e} = a \sin \omega t \cos \frac{\pi}{4} = \frac{a}{\sqrt{2}} \sin \omega t.$ $A_{2e} = a \sin \omega t \cos \frac{\pi}{4} = \frac{a}{\sqrt{2}} \sin \omega t.$ 1st quarter wave plate produces a phase difference of 2 and converts plane polarized light into circularly polarized light. Therefore, components of light vector leaving 1st QWP and entering the model are: A1l = $\frac{a}{\sqrt{2}} \sin\left(\omega t + \frac{\pi}{2}\right) = \frac{a}{\sqrt{2}} \cos\omega t$. $A2l = a \sin \omega t$. If the principal axes of the model are inclined at angle θ with the 1st QWP, then the components of the light vector along the principal axis of the model on entering are $Aae = A_1 l \cos \theta - A_2 l \sin \theta .$ $=\frac{a}{\sqrt{2}}\cos \omega t.\cos \theta - \frac{a}{\sqrt{2}}\sin \omega t.\sin \theta.$ $A_{be} = A_1 l \sin\theta + A_2 l \cos\theta \, . = \overline{\sqrt{2}} \cos \omega t \, \sin\theta + \overline{\sqrt{2}} \sin \omega t \, . \cos\theta \, .$ The stress distribution along the horizontal diameter in a circular disc under compression is given by $\sigma_x = \sigma_1 = \frac{2P}{\pi Dt} \frac{D^2 - 4x^2}{D^2 + 4x^2}$ $\sigma_{\rm v} = \sigma_2 = -\frac{2P}{\pi Dt} \frac{4D^2}{D^2 + 4x^2}$ At the center i.e. x = 0 $\sigma_1 = \frac{2P}{\pi Dt}$ and $\sigma_2 = -\frac{6P}{\pi Dt}$ Therefore, $\sigma_1 - \sigma_2 = \frac{8P}{\pi Dt}$ ----- (1) From stress optics law for 2 dimensions Nfσ $\sigma_1 - \sigma_2 = \underline{t}$ From (1) & (2), ----- (2) $f_{\sigma} = \frac{8P}{\pi DN} = \frac{8}{\pi D} * \frac{P}{N} = \frac{8}{\pi D} * \frac{\Delta P}{\Delta N}$, and in the case of a central hole through the

		$f_{\sigma} = \frac{8}{\pi (D-d)} * \frac{\Delta P}{\Delta N}$ N/mm/fringes By knowing the loads required for producing different number of is plotted and the slope of this line gives ($\Delta P/\Delta$ N) which are constant of the material.	of fringes, a graph of P vs.N e used to estimate the fringe
6	Procedure, Program, Activity, Algorithm, Pseudo Code	 Make all arrangements are shown in fig. Apply weight gradually. Then measure the fringe order and point of interest ie., from inner boundary to outer boundary al 3.Take material fringe constant as determined from 	l corresponding loads at the long horizontal diameter. calibration experiment.
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Then calculate stress concentration factor (K)	
8	Observation Table, Look-up Table, Output	Outer diameter of disc $D =$ mmInner diameter of disc $d =$ mmThickness of the disc $t =$ mmLength of fulcrum to load $(L_1) =$ cmLength of fulcrum to model $(L2) =$ cm	
9	Sample Calculations	1. Effective load P = $(w^*g)(L_1/L_2)$ Newtons = 2. Slope = $\Delta P / \Delta N$ Newton/Fringe =	
		3. Material fringe constant $f_{\sigma} = \overline{\pi (D-d)} \frac{d}{\Delta N} = f_{\sigma} / f_{\sigma}$	N/mm/fringe
		4. Model fringe value $f = \frac{f_{t}}{t} t = f_{t}$	N/mm ² /fringe
		5. Max. stress (σ_{max}) = N t = 6. Normal stress (σ_{nom}) = P/{D-d)*t} = 7. Stress concentration factor = K _{σ} = $\sigma_{\text{max}} / \sigma_{\text{nom}}$	N/mm ² N/mm 2
10	Graphs, Outputs		
11	Results & Analysis		
12	Application Areas		
13	Remarks		
14	Faculty Signature with Date		

D. Determination of Stress Concentration Factor for Rectangular Plate with Central Hole

-	Experiment No.:	1	Marks		Date		Date	
					Planned		Conducted	
1	Title	Deter	mination of fr	inge constant	of Photo-elas	tic material u	sing Circular	disk subjected
		diame	liametric compression, Pure bending specimen (four point bending)					
2	Course Outcomes	Apply	pply the load on circular disk subjected to diametrical compression, pure bendin					
3	Aim	To d	determine stress concentration factor in a rectangular plate with the					
		ce	ntral hole su	bjected to te	ensile load.			

4	Material / Equipment	Lab Manual
	Required	
5	Theory, Formula,	The stress concentration factor (K_{σ}) for a given member is defined as the ratio of maximum
	Principle, Concept	stress σ_{max} to the normal stress σ_{nom} .
		$\frac{Nf_{\sigma}}{d}$
		$\sigma_{\max} = h$
		$\sigma_{nom} = P/(w-a)h$
		Where $N = \text{fringe order}$
		J_{σ} = Material fringe value (N/mm/fringe)
		P = load on specimen (Newtons)
		W = width of circular hole (mm)
		a = Diameter of circular hole (mm)
		H = Thickness of plate
6	Procedure, Program,	1.Keep the polariscope to produce circular polarized light
	Activity, Algorithm,	2.Switch on the sodium vapour lamp, wait for 10-15min, till golden yellow colour is
	Pseudo Code	obtained
		3.Put the specimen & count the no. of fringes
		4. Determine the stress concentration factor & calculate slope from the graph
		$\Delta_{\rm P}/\Delta_{\rm N}$
7	Block, Circuit, Model	
	Diagram, Reaction	
	Equation, Expected	
	Graph	
8	Observation Table,	Outer diameter of disc D = mm
	Look-up Table,	Inner diameter of disc d = mm
	Output	Thickness of the disc $t = mm$
		Length of fulcrum to load $(L_1) = cm$
		Length of fulcrum to model $(L2) = cm$
9	Sample Calculations	1. Maximum Stress $(\sigma_{max}) = n f_{\sigma} / h$
		2. Normal Stress $(\sigma_{nom}) = P / (w - a) h$
		3. Stress concentration factor $(K_{\sigma}) = (\sigma_{max} / \sigma_{nom})$.
		N/mm ²
		6. Normal stress (σ_{nom}) = P/{D-d)*t} = N/mm 2
		7. Stress concentration factor $= K_{\sigma} = \sigma_{max} / \sigma_{nom}$
10	Graphs, Outputs	
11		
11	Results & Analysis	
12	Application Areas	
13	Kemarks	
14	Faculty Signature	
1	with Date	

Experiment 06 : Determination of equilibrium speed, sensitiveness, power and effort of/**Porter Governor** Proel Governor.

A. Porter Governor

-	Experiment No.:	1	Marks	Date		Date	
				Planned	Co	onducted	

1	Title	Determination of equilibrium speed, sensitiveness, power and effort ofPorter/ Proel / Hartnell Governor.
2	Course Outcomes	Apply the equilibrium speed, sensitiveness, power and effort ofPorter/ Proel / Hartnell Governor.
3	Aim	To determine Frictional force acting on the governor and to draw controlling force curve.
4	Material / Equipment Required	Lab Manual
5	Theory, Formula, Principle, Concept	The function of the governor is to regulate the mean speed of rotation of an engine where there is a variation in load, which may increase or decrease its speed. Hence it is necessary to vary the supply of fuel accordingly, which will be done by the governor. It automatically consists or controls supply of working fluid to engine with varying load columns, keeps the mean speed within certain limits. When the load decreases, the speed increases. Then it's necessary to decrease the supply of the working fluid and vice versa, which is done by the governor. Governors can be spring loaded or dead weight type. A little consideration will show that when the load increases, the configuration of the governor changes and a valve is moved to increase the supply of the working fluid. The porter governor is a modification of a watt governor, with a control load attached to the sleeve as shown in the figure. The load moves up and down the spindle. The additional downward force increases the speed of revolution required to unable the walls to raise to any pre-determined level. There are several methods of determining the relation between the height of the governor (h) and the angular speed of the ball (w). The following are the two
		 methods: 1. Method of rev. of force. 2. Instantaneous centre method.
		The governor mechanism under test is fitted with the chosen rotating weights and spring, where applicable and assembles the governor assembly as shown in figure. Connect the motor to speed control unit using 4 way cable provided. Switch in the supply. Increase the speed slowly until the centre sleeve rises off the lower stop and aligns with the first division on the graduated scale. Record the sleeve positioning and speed. Increase the speed in steps to have suitable sleeve movements, and note down the displacement and speed accordingly through out the range of sleeve movement possible.
6	Procedure, Program,	1. Mount the required governor assembly over the spindle.
	Activity, Algorithm, Pseudo Code	 Inghten the necessary bolts. Governor is connected to main supply through dimmerstat. Various parameters of the governor are note down, ex. The length of arm, radius of
		balls etc.,
		5. Ensure that dimmerstat is at zero position.
		begins to life. The speed is allowed to stabilize.
		7. Measure the speed and sleeve rise.
		8. The speed of motor is further increased and the sleeve rises. After it stabilizes the
		reading of the speed and lift is noted.
		 Repeat the experiment at different speed, different weights. Calculate frictional forces and control force
		11. Draw the controlling force and frictional forces curves.

B. Porter Governor.

LABORATORY PLAN - CAY 2019-20

		SL NO.	Speed N (Rpm)	Sleeve Lift X (M)	$\begin{array}{c} C_{i} = \\ C^{-} \\ (X_{i}/2) \\ (M) \end{array}$	$S_{i=} \sqrt{L^2 - Ci^2}$ (M)	$\begin{array}{c} R_i \\ = DG + S_i \\ (M) \end{array}$	$\Theta = Tan^{-1}$ (C/S)	$\begin{array}{c} H=\\ R_i \tan\\ \Theta\\ (M) \end{array}$	Fr force "f" (N)	Control lingfor ce "F" (N)
9	Sample Calculations	For N frictic Whe b= a=	For N= rpm frictional force(f) ={(N ² * M*g *H _i) / P*895 }- {m *g +M*g } Where P=b/a b= distance between C.F & sleeve a= distance between sleeve & ball								
10	Graphs, Outputs	1.Con 2 .Cor 3. Cor 4.Frict	Controlling force(F) vs Speed(N _i) 2.Controlling force(F) vs Height of the govrner(H _i) 3. Controlling force(F) vs Radius of rotation(R _i)								
11	Results & Analysis	1. Sen	sitiveness of	f governo	r =						
		2. Gov	vernor effort	=							
12	Application Areas										
13	Remarks										
14	Faculty Signature with Date										

Experiment 07: Determination of pressure distribution in Journal bearing

-	Experiment No.:	1	Marks		Date		Date			
					Planned		Conducted			
1	Title	Deter	mination of pr	essure distribu	tion in Journal	bearing				
2	Course Outcomes	Apply	and understar	nd the minimum	n film thickne	ss, load carryi	ng capacity, fr	ictional torque		
		and pr	nd pressure distribution of journal bearing.							
3	Aim	To st	To study the pressure distribution in Journal Bearing under different experimental							
		condit	ions(load,spee	d or clearance)) and verify the	e same theoreti	cally.			
4	Material / Equipment	Lab M	Ianual							
	Required									
5	Theory, Formula,		A journal bearing supports a shaft and permits rotary motion.							
	Principle, Concept	≻	Due to frict	ion between co	ontact surfaces	there is a wear	ring of surface	s and		
		genera	eneration of heat. It results loss of power.							
		>	To minimize this, lubricating oil is introduced in the clearance between the journal							
		and be	earing. This pi	ovides a thin f	ilm, separating	the contact su	irfaces.	1		
		~	The amount of separation depends upon the thickness of the film formed.							
		~	I hickness of	of film depends	s upon pressure	e developed in	the annular cle	earance.		
		>	Magnitude	of pressure is a	i function of d	mension of be	aring, speed of	rotation,		
		load o	n the bearing p	properties of lu	bricant and oil	leakage from	the surfaces.	haaming oon ha		
		•	The study of	or pressure dist	ribution and v	arrables associ	lated with the	bearing can be		
6	Procedure Program	useu 1	or design purp	Uses. Il the oil tank w	with lubricating	roil(SAE 30)	inder test & no	sition the		
0	Activity Algorithm	1.	i I'l tat	n the on tank v	vini indireaning	, OII(SAL 50)	inder test & pe	osition the		
	Pseudo Code	2	Dr	ain out air bub	bles from all t	he manometer	tubes as well a	s from the		
		2.	inl	et tube.	oles nom an t	ne manometer	tubes as wen t	is from the		
		3	Ensure the	t that level of o	oil in manome	ter tubes and si	upply tank is s	ame.		
			Note down	n the initial ma	nometer readin	$ng(P_0)$.				
		4.	Ch	neck and ensure	e that the dimn	ner stat knob is	s at zero positio	on.		
		5.	Switch on t	he motor and r	note down the	direction of rot	ation.			
		6.	. Ro	otate the dimme	er stat knob gra	adually till the	desired speed	is reached.		

		7		· · · · · · · · · · · · · · · · · · ·							
		7. Add desired loading arm	loads and adjust the balancing is vertical	weights provided, so that the							
		(This provision not ava	nilable).								
		8. Run the set-up at this	speed and load till the oil level	s in all the manometer tubes							
		9 Note down the pressu	9. Note down the pressure of oil in all manometer tubes and tabulate them.								
		10. Change the speed or l	oad or clearance and repeat the	experiment if necessary.							
		11. After the exp	eriments is over remove the lo	ad.							
		12. Bring down i 13. The difference	ce in manometer pressure at each	the motor and main supply.							
			r r								
7	Block, Circuit, Model										
	Equation, Expected										
	Graph										
8	Observation Table,	Direction of rotation of bearing									
	Output	Speed of rotation:									
		Load on the bearing:									
		Tape No.	Pressure head (P) in cm	$(P-P_o)$ in cm							
		1									
		2									
		3									
		4									
		5									
		6									
		7									
		8									
		9									
		10									
		11									
		12									
		13									
		14									
		15									
		16									
		17									
		18									
		19									
		20									
		21									
		22									
		23									
		24									
		25									
9	Sample Calculations	1 Complete 1. 1. 1. 1. 1.		he complex hand in some Caritan							
10	Graphs, Outputs	angular intervals of 30° of oil f	or pressure head of oil above t ilm.	ne supply nead in cm of oil at							
		2. Graph to be plotted for	r pressure head vs pressure tap	ing in axial directions.							

11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 08 : Determination of principle stresses and strain in a member subjected to combined loading using strain rosettes

-	Experiment No.:	1	Marks		Date		Date				
					Planned		Conducted				
1	Title	Deter	mination of pr	inciple stresses	s and strain in	a member sul	ojected to con	nbined loading			
		using	strain rosettes								
2	Course Outcomes	To me	asure strain in	various machi	ne elements us	ing strain gaug	ges				
3	Aim	To det	ermine the ma	gnitude of prin	ciple stresses a	& its direction					
4	Material / Equipmen	t Lab n	nanual								
	Required										
5	Theory, Formula	,The p	urpose of rose	tte apparatus i	s to determine	the magnitud	les & direction	ns of principal			
	Principle, Concept	stresse	stresses $\sigma_1 \& \sigma_2$ under bi-axial state of stress (plane stress condition).								
			One of the popular methods of strain analysis is by using the electrical								
		resista	resistance strain gauges. The gauges work on the principle that when a thin resistance wire								
		underg	goes deformat	ion, its resiste	ance changes	in proportion	to the amount	nt of strain it			
			ons governing	the relationsh	in between st	rain & resistant	nge ill fesisial	lectric circuits			
		like w	like wheat stope's bridge or potentiometer are also used in the analysis by strain gauges. In								
		directi	on of princing	l stresses stra	in gauges shou	ild be aligned	in the direction	on of principal			
		stresse	es. However, o	ften we encou	nter situations	in which direct	tion of princir	al stresses are			
		unkno	wn. In these si	tuations, use o	f strain gauge	osette is made	·····				
			А	group of 3 to 4	strain gauges	arranged in so	me configurati	on is called as			
		a rose	a rosette. Gauges are placed at certain angular rotation. Theoretically, gauges in the rosette								
		can be	placed at any	angle but due	to practical co	nsiderations, 2	or 3 sets of va	alues are used.			
		In the	In the 3-element strain rosette, the rectangular and delta configurations are employed. In the								
		forme	former, 2 gauges are placed at right angles while the 3 rd gauge makes an angle of 45° with								
		both g	both gauges. In the delta configuration, gauges are placed in a 60° angle.								
			Th	e strain is defi	ned as the rati	o of change in	n mechanical j	property to the			
		origin	al property. Si	ice the change	in length of th	e material is v	ery small, so it	t's always read			
		in terr	ns of micro st	rain. Since it's	difficult to m	easure the len	gth resistance,	strain gauges			
		are us	ed to measure	strain in materi	al directly.			C			
		atraca	IU: on studin fields	The different	measure 5 stra	ans at a point	completely de	lined by either			
		stress	3 alamant r	. The different	arrangements	are:-					
		a. b	3 element d	alta rosatta	alle.						
		о. С	4 element r	ectangular rose	tte etc						
		с.	i element i	cetungului 105e							
			$\xi_{\rm A} = \xi_{\rm XX} \cos \theta$	$s^2 \theta_{\rm A} + \xi_{\rm YY} \sin^2 \theta_{\rm A}$	$\theta_A + \gamma_{XY} \sin \theta_A c$	$os\theta_A$.					
			$\xi_{\rm B} = \xi_{\rm XX} \rm co$	$s^2 \theta_A + \xi_{YY} \sin^2 \theta_A$	$^{2}\theta_{A} + \gamma_{XY}\sin\theta_{B}\theta_{A}$	$\cos\theta_{\rm B}$.					
			$\xi_{\rm C} = \xi_{\rm XX} \ {\rm co}$	$s^2 \theta_A + \xi_{YY} \sin^2$	$^{2}\theta_{A} + \gamma_{XY}\sin\theta_{C}$	$\cos\theta_{\rm C}$.					
			0	0							
		But θ_A	$\Lambda = 0^{\circ}, \theta_{\rm B} = 45$	$\theta_{\rm C} = 90^{\circ}$.							
I			If $\theta_A = 0^\circ =$	$\xi_{\rm A} = \xi_{\rm XX} \cos \theta$	$2\theta = \xi_{XX}$.						
			$\theta_{\rm B} = 45^{\circ}$	$=> \xi_{\rm B} = [\xi_{\rm XX} +$	$\zeta_{YY} + \gamma_{XY}]^{1/2}.$						
			$\Theta_{\rm C} = 90^{\circ}$	$=>\zeta_{C}=\zeta_{YY}$.							
			$\gamma_{XY} = 2\zeta_B - 2\varepsilon_B$	$\zeta_{XX} = \zeta_{YY}$.							
			$\gamma_{XY} = 2\zeta_B$	$\zeta_{A} - \zeta_{B}$.							
l		Princi	nle strains are:								
		1 mol	$\xi_{1,2} = [\xi_{vv} + \xi_{1,2}] = \xi_{vv} + \xi_{vv}$	$-\xi_{\rm vv}]/2 \pm 1/2$	$(\xi_{\mathbf{x}\mathbf{y}} - \xi_{\mathbf{y}\mathbf{y}})^2 + $	$\gamma^2 x x$.					
			$\xi_{1,2} = [\xi_{\lambda} + \xi_{1,2}]$	$\xi_{\rm C}]/2 \pm 1/2\sqrt{(\epsilon_{\rm c})}$	$(-\xi_{\rm C})^2 + (2\xi_{\rm P})^2$	$-\xi_{\rm A}-\xi_{\rm C})^2$.					
15MI	EL76	1	71,2 LJA	<u> </u>	Cop	yright ©2017. cA.	AS. All rights rese	erved.			

		Orier Princ	rientation: $-\theta = \frac{1}{2} \tan^{-1} \left[\sqrt{\gamma_{XY}} / (\xi_{XX} - \xi_{YY}) \right].$ = $\frac{1}{2} \tan^{-1} \left[(2\xi_B - \xi_A - \xi_C / (\xi_A - \xi_C)) \right].$ rinciple stresses: $-\sigma_1 = \frac{E(\xi_1 + \gamma \xi_2)}{(1 - \gamma^2)}, \qquad \sigma_2 = \frac{E(\xi_2 + \gamma \xi_1)}{(1 - \gamma^2)},$							
6	Procedure, Program,	1.	Switch ON the	e apparatus			• /			
	Activity, Algorithm,	2.	Set the apparatus of the strain indicator to Zero for no load condition							
	Pseudo Code	3. 4	Apply the load	d on specim	en & noted	own the stra	in in differe	ent direction	l	
		4. 5.	Calculate the stress & angular inclinations in different loads.							
7	Block, Circuit, Model				,					
	Diagram, Reaction									
	Equation, Expected									
0	Graph Observation Table	Voun	a's Modulus(E)-	$2 \times 10^5 \text{ N/m}$	m^2					
0	Look-up Table	Poiss	bung s Modulus(E)= $2X10$ N/mm bisson's ratio (\Box)= 0.3							
	Output	1 0155		5						
	-	Sl.	Pressure	Strain	Strain	Strain		2		
		No.	Applied	a	b		1	-		
			'P'Kg/m ²							
9	Sample Calculations	1			(1)	1 -			□ \ ² 1	
		2(1 +	Stress($\Box_{1,2}$) - E[$(\square_a + \square_c)/2($	(I- 🗆) <u>+</u>		$\Box (\Box_a + \Box_c)$	$+(2 \square_b - \square_a)$	ı-□c)]	
		2(1				2(1 +				
		2.	$\operatorname{Tan} 2 \Box = (2 \Box_{b} -$	$\square_a - \square_c)/($	$\square_a - \square_c$)	``				
10	Graphs, Outputs									
11	Results & Analysis									
12	Application Areas									
13	Remarks									
14	Faculty Signature									
	with Date									

Experiment 09 : Determination of stresses in curved beam using strain gauge.

-	Experiment No.:	1	Marks		Date		Date		
	-				Planned		Conducted		
1	Title	Deter	mination of str	esses in curved	l beam using st	rain gauge.			
2	Course Outcomes	Desig	n the logic fo	or a given prob	lemTo determi	ne principle st	tress and strair	n in a member	
		subjec	ubjected to combined loading using strain gauges.						
3	Aim	To de	o determine principle stress and strain in a member subjected to combined loading using						
		strain	train gauges.						
4	Material / Equipment	Lab M	Lab Manual						
	Required								
5	Theory, Formula,	A bea	m in which the	e neutral axis in	n the unloaded	condition is cu	urved instead o	f straight or if	
	Principle, Concept	the be	am is original	ly curved befo	ore applying the	e bending mor	ment, are term	ed as "Curved	
		Beam	S						
		Curve	d beams find a	applications in	many machine	members such	h as c – clamps	s, crane hooks	
		frame	frames of presses, chains, links, and rings						
6	Procedure, Program,	1. Me	easure dimensi	ons of the cu	rved beam and	the location	and the orien	tation of each	
	Activity, Algorithm,	strain	gauge.						

	Pseudo Code	2. Number strain gauges and connect them to the strain gage indicator in the same order.
		3. Balance the circuit for each strain gage. If it is not possible to set zero in the indicator,
		record the initial
		reading.
		4. Set the gage factor for the strain gages used in this experiment.
		5. Apply load gradually on the curved beam by adding weights and record the final strain
		readings at that
		load.
		6. Determine the stresses at inner and outer layer of beam.
7	Block, Circuit, Model	
	Diagram, Reaction	
	Equation, Expected	
	Graph	
8	Observation Table,	1. Outer radius of beam, ro= mm
	Look-up Table,	2. Inner radius of beam, ri=mm
	Output	3. Radius of beam to central axis, rc=mm
		4. Young"s modulus, E= 210GPa
9	Sample Calculations	1. Neutral radius, mm
		2. Eccentricity, e = rc-rn mm
		3. Distance from neutral axis to inner radius, Ci = rn-ri, mm
		4. Distance from neutral axis to outer radius, Co = ro-rn, mm
		5. Stress at inner layer,
		6. Stress at outer layer,
		7. Experimental stress, $\sigma = E \times \epsilon N/mm2$
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 10 : Experiments on Gyroscope (Demonstration only)

-	Experiment No.:	1	Marks		Date		Date				
	-				Planned		Conducted				
1	Title	Exper	xperiments on Gyroscope (Demonstration only)								
2	Course Outcomes	unders	iderstand the working principles of machine elements such as Gyroscopes								
3	Aim	To stu	study the gyroscopic behavior of rotating masses.								
4	Material / EquipmentLab Manual										
	Required										
5	Theory, Formula, The earliest observation and studies on gyroscopic phenomenon carried out during										
	Principle, Concept	Newton"s time. These were made in the context of the motion of our planet which in effect									
		in a r	a massive gyroscopic. The credit of the mathematical foundation of the principles of								
		gyroso	roscopic motion goes to Euler who derived at set of dynamic equation relating applied								
		mecha	echanics and moment inertia, angular acceleration and angular velocity in many machines,								
		the ro	tary compone	nts are forced	to turn abou	t their axis o	ther than their	r own axis of			
		rotatic	on and gyrosco	pic effects are	thus setup. Th	e gyroscopes a	are used in ship	ps to minimize			
		the rol	lling & pitchin	g effects of wa	ater. A Gyrosco	ppe is a spinni	ng body mount	ted universally			
		to turr	n with an angu	lar velocity of	precession in a	direction at ri	ght angles to t	he direction of			
		the mo	oment causing	it but its cente	r of gravity wi	ll be in a fixed	position. The	gyroscope has			
		2 degi	rees of freedor	n. The first ax	is is OX calle	d spin axis on	which the boo	ly is spinning.			
		The se	econd axis is C	OY called Torq	ue axis. Third	axis OA is cal	led precession	axis on which			
		the bo	ody moves op	posing the orig	ginal motion.	All the 3 axis	are mutually	perpendicular.			
		Such a	a combined eff	ect is known a	s Gyroscopic e	effect.	-				
		The a	nalyses of gyr	oscopic princi	ples are based	on Newton's	Laws of Motio	on and inertia.			
		When	the rotor i	s spinned, th	ne gyroscope	exhibits the	following t	wo important			
		charac	cteristics:	-			-	-			
		1. Gyr	oscopic Inertia	a							
		2. Pre	cession								

9 Sample Calculations

10	Graphs, Outputs	
11	Results &Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

	Table 1: TLPA	<u>– Exam</u>	ple Course	<u>e</u>			
Expt-	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructio	Assessment
#	(Split module content into 2 parts which have	Teaching	Learning	Bloo	Action	n	Methods to
	similar concepts)	Hours	Levels for	ms'	Verbs for	Methods	Measure
			Content	Level	Learning	for	Learning
						Learning	
Α	В	С	D	E	F	G	H
1	Determination of natural frequency, logarithmic	3	L3	L3	Vibration	Demonstr	Viva &
	decrement, damping ratio and damping Co-		(Apply)	(Appl		ate	presentation
	efficient in a single degree of freedom vibrating			y)			
	systems (longitudinal and torsional)						
2	Determination of critical speed of rotating shaft.	3	L3	L3	critical	Demonstr	Viva &
			(Apply)	(Appl	speed	ate	presentation
				y)			
3	Balancing of rotating masses.	3	L3	L3	Balancing	Demonstr	Viva &
			(Apply)	(Appl		ate	presentation
		-		y)		-	
4	Determination of fringe constant of Photo-elastic	3	L3	L3	Photo-	Demonstr	Viva &
	material using Circular disk subjected diametric		(Apply)	(Appl	elastic	ate	presentation
	compression, Pure bending specimen (four point			y)			
5	Determination of stress concentration using Deter	2	12	12	atroas	Domonstr	Vino Pr
5	elasticity for simple components like Plate with	5	(Apply)	LJ (Appl	concentrati	oto	viva &
	hole under tension or bending circular disk with		(Appry)	(Appi	on	ate	presentation
	circular hole under compression 2-d crane hook			<i>y)</i>	on		
6	Determination of equilibrium speed, sensitiveness.	3	L3	L3	speed	Demonstr	Viva &
	power and effort of Porter/ Proel / Hartnell	-	(Apply)	(Appl	~r···	ate	presentation
	Governor.		× II 57	v)			1
7	Determination of pressure distribution in Journal	3	L3	L3	Hydrodyn	Demonstr	Viva &
	bearing		(Apply)	(Appl	amic	ate	presentation
				y)	Lubricatio		-
					n		
8	Determination of principle stresses and strain in a	3	L3	L3	Strain	Demonstr	Viva &
	member subjected to combined loading using		(Apply)	(Appl	rosettes	ate	presentation
	strain rosettes			y)			
9	Determination of stresses in curved beam using	3	L3	L3	Strain	Demonstr	Viva &
	strain gauge.		(Apply)	(Appl	guage	ate	presentation
				y)		_	
10	Experiments on Gyroscope (Demonstration only)	3	L2	L2	Gyroscopi	Demonstr	Viva &
			understan	under	c effect	ate	presentation
			d	stand			

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Expt	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome
- #	Outcome from	Concepts	_	(What all Learning	(1.Action Verb,	
	study of the	from		Happened from the	2.Knowledge,	
	Content or	Content		study of Content /	3.Condition /	Student Should be
	Syllabus			Syllabus. A short word	Methodology,	able to

				for learning or	4.Benchmark)	
A	Ι	J	K	L	М	N
1	Determination of natural frequency, logarithmic decrement, damping ratio and damping Co-efficient in a single degree of freedom vibrating	Vibration	Vibration	Apply the natural frequency, logarithmic decrement, damping ratio and damping.	Action Verb : Understanding Knowledge : condition : Vibration	Apply the natural frequency, logarithmic decrement, damping ratio and damping.
	(longitudinal and torsional)					
2	Determination of critical speed of rotating shaft.	critical speed	critical speed	Apply for different diameter of shaft to find critical speed.	Action Verb : Analyzing Knowledge : Record structure	Apply for different diameter of shaft to find critical speed.
3	Balancing of rotating masses.	Balancing	Balancing	Applying the forces and couples in rotating mechanical system.	Speed Action Verb : Evaluate Knowledge of Balancing	Applying the forces and couples in rotating mechanical system.
4	Determination of fringe constant of Photo-elastic material using Circular disk subjected diametric compression, Pure bending specimen (four point bending)	Photo- elastic	Photo-elastic	Apply the load on circular disk subjected to diametrical compression, pure bending	Action Verb : Evaluate Knowledge : PhotoElasticity	Apply the load on circular disk subjected to diametrical compression, pure bending
5	Determination of stress concentration using Photo elasticity for simple components like Plate with hole under tension or bending, circular disk with circular hole under compression, 2-d crane hook.	stress concentrati on	stress concentration	Apply the load for simple components like Plate with hole under tension or bending, circular disk with circular hole under compression, 2- d crane hook.	Action Verb : Analyzing Knowledge Stress Concentration	Apply the load for simple components like Plate with hole under tension or bending, circular disk with circular hole under compression, 2-d crane hook.
6	Determination of equilibrium speed.	speed	speed	Apply the equilibrium speed, sensitiveness, power and effort	Action Verb : Creating Knowledge of Speed	Apply the equilibrium speed, sensitiveness, power and effort

se pc ef of Pr Hi G	ensitiveness, ower and fort Porter/ roel / artnell overnor.			ofPorter/ Proel / Hartnell Governor.		ofPorter/ Proel / Hartnell Governor.
D of di Jo be	etermination f pressure istribution in purnal earing	Hydrodyna mic Lubrication	Hydrodynamic Lubrication	Apply and understand the minimum film thickness, load carrying capacity, frictional torque and pressure distribution of journal bearing.	Action Verb : Analyzing Knowledge Hydrodynamic Lubrication	Apply and understand the minimum film thickness, load carrying capacity, frictional torque and pressure distribution of journal bearing.
Do of stu stu m su cc lo stu	etermination f principle resses and rain in a lember lbjected to ombined bading using rain rosettes	Strain rosettes	Strain rosettes	To measure strain in various machine elements using strain gauges	Action Verb : Analyzing Knowledge Strain rosettes	To measure strain in various machine elements using strain gauges
Do of cu us ga	etermination f stresses in rved beam sing strain auge.	Strain guage	Strain guage	Apply the stresses in curved beam using strain gauge.	Action Verb : Analyzing Knowledge Strain guage	Apply the stresses in curved beam using strain gauge.
Ez or (E n	xperiments n Gyroscope Demonstratio only)	Gyroscopic effect	Gyroscopic effect	understand the working principles of machine elements such as Gyroscopes	Action Verb : Analyzing Knowledge Gyroscopic effect	understand the working principles of machine elements such as Gyroscopes